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Analysis of the Suspended Strip in Elliptical
Cross Section by Separation of Variables

Tullio Rozzi, Fellow, IEEE, Luca PierantoniMember IEEE,and Marco Ronzitti

Abstract—The coaxial suspended strip configuration in ellip-
tical cross section is often found in transitions from ordinary
coax to planar circuits and other geometries. Using elliptical
coordinates makes the problem separable, leading to closed-form
solutions for the fundamental TEM mode and the TE/TM higher
modes. It is emphasized that the presence of the thin strip is
dealt with analytically by this approach. Mode patterns and TEM
characteristic impedance are reported. The cutoff frequencies
versus eccentricity are computed for the first eight modes.

Index Terms—Elliptical coordinates, strips. -1 AR

. INTRODUCTION

THIN metallic strip centrally suspended in a hollow
conductor of elliptical cross section, as shown in Fig. 1,

constitutes a coaxial-like TEM transmission line, where TEM
characteristic impedance and mode pattern can be controlled
by varying the strip width and eccentricity.

Apart from its own merit, it can be found in transitions fromkig. 1. cross-section geometry and coordinate system.
ordinary coax to coplanar waveguide (CPW) and other planar
guides or from coax to TEM cells [1]. f w I

Although the fundamental TEM mode of the cross section
of Fig. 1 can be analyzed by conformal mapping [2], [3],
its higher order TE/TM modes involve solution of the wave
equation with boundary conditions on the elliptic conduc-
tor and in presence of sharp-edge conditions at the strip
extremities. The latter problem can also be solved by a V=3/4Y0 B
variety of methods, such as variational techniques, transverse V=Vof2
resonance, or numerical methods such as finite elements of
finite-difference time domain (FDTD). This configuration,
however, also provides an instructive test-bed for a direct
solution of the wave equation by the method of separation | A %
of coordinates, once the appropriate system of Coordinate%-bg. 2. Equipotential curves on the cross section. (These curves were plotted
selected. The latter is seen to be the elliptic cylinder systefo, a value of eccentricity equal to 0.7).
where the inner strip conductor is the limiting case of an ellipse
of unit eccentricity. in closed elliptical waveguides and is perfectly “regular,” that

Separation of “radial” and “angular” dependencies leads is, it neither feels the presence of the strip nor presents edge
the well-known Mathieu’s equation, the solutions of whiclsingularities. The latter kind, however, being closely linked to
are fairly well documented [4], [5] and currently available inhe presence of the strip, displays the typical singular square
standard mathematical codes [6]. root behavior.

The closed-form analysis very simply produces the funda- Characteristic impedance and mode pattern of the funda-
mental TEM mode (see Fig. 2) while also highlighting thénental mode are reported versus the eccentricity, whereas

existence of two types of higher modes, first reported in [€Ltoff frequencies and mode patterns are computed for the
in connection with ridged waveguides. The first kind is founfirst eight TE and TM modes of both kinds above.

|
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consists of an outer conductor of elliptical form, and an innevhereb is the separation constant ahds defined as
strip conductor extending between the two focal points of the a- k

ellipse; both conductors are ideal. This cross section can be h= 9 (5¢)

described in terms of an elliptical cylindrical coordinate system Equation (5a) is the Mathieu's equation, while (5b) is the
(p, ¢, z) that is connected to the Cartesian @xe y, z) by modified Mathieu’s equation. The proper azimuthal solutions

means of the following relationships [4], [7]: are those having periods af and 2r, and, therefore® is
z = ﬁcosh(p) cos (¢) the Mathieu function of either odd or even types denoted
CQL by S, (h, ¢) and S._(h, ¢), respectively. The value of the
y = - sinh (p) sin (¢). (1a) separation constant is completely defined by this choice and
2
The ellintical outer bound fth ide is d ibed b takes the values,, andb.  , where these quantities are the
th Ie € '_p Ical outer boundary ot the guide Is describe é{lgenvalues correspondmg to odd or even periodic Mathieu
€ locus. functions. Two types of radial functions correspond to each
p=po, —T<P<mw (1b) value of h and b. They may be denoted by,, (k, p) and
whereas the inner strip of width can be seen as a degenerat®o, (1, p), or Je, (h, p) and N, (%, p), and they correspond
ellipse given by to Bessel and Neumann functions in circular cylindrical co-
ordinates. For details and properties of these functions, the
p=0, T < P < 7. (1c)

reader is referred to [4] and [5].
The geometrical characteristics of the section can be use-

fully summarized by a single parameter, its eccentricity

defined as follows: Ill. FUNDAMENTAL TEM-MODE ANALYSIS

o= a (1d) In order to obtain the TEM mode we set = 0; thenk = g8
A and the wave equation (2) reduces to the Laplace’s equation
whereA is the major axis of the elliptical outer conductor thafor the quasistatic potential:

is expressible in terms af, pg as

2\
A= qacosh(po). (1e) V=0 (6)
If the inner-strip potential is set equal ¥,, the solution
B. Solution of the Wave Equation of (6) is simply given by
The electromagnetic wave propagation in the above cylin-
drical guide can be described in terms of a scalar-wave v =Y, <1— —) @)
function ¥ satisfying the Helmholtz equation: Po
VU 4+ KU =0 (2) The electric and magnetic fields are derived by means of
with the following relationships:
E=-VVU (8)
k2 =k - 32 (2a)
hence,
being k. the transverse component of the wavenunikes 1%
w/c. E=E, 5= '0 (8a)
In terms of elliptical coordinates, the Helmholtz equation gl Po
can be rewritten as follows: H=H, ¢=-E, ¢ (8b)
Fi+gi+(”hymw2—m§@ U=0. (3 !
902 " 942 2 P ' being
Equation (3) separates in elliptic cylinder coordinates. As a
consequence, the scalar-wave functibrcan be represented g= @ Jsinh? p+ sin® ¢ (8c)
as the product: 2
U = ®(¢) - R(p). (4) a “metric” scale factor, and
The wave functiont must also be continuous with con- I
tinuous first derivatives at all points of the region except, =1\l (8d)
at most, isolated points on the boundary where it may have ¢
quadratically integrable singularities. the free-space wave impedance.

The azimuthal functio® and the radial functiolR may be
determined from the two differential equations:

IV. CHARACTERISTIC TEM IMPEDANCE
" + (b — h%cos?¢) - & =0 (5a)

The characteristic TEM impedance is obtained from the
computation of the distributed capacitance and inductance of
—R" + (b® — h%cosh?p) - R=0 (5b) the line-per-unit length.
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A. Capacitance-per-unit Length A. TE Modes
Referring to Fig. 1, after setting = cos~!(2x/a), wherez Apart from the particular type of symmetry considered,
is the abscissa on the strip (i.e., fipe= 0), the charge density these types of modes must satisfy the boundary condition of
o is given by the maximum tangential magnetic field on the conductor:
20(V/po) v v
= 9 —— | = —|,—0 = -
o alsind] (9) ap lp=po =0 and ap lp=0 =0, for —r <o <.
. o (17a)
and the total charge per unit length on the strip is 1) TE Even Modesin order for H. to be even with respect
ox v to they = 0 axis, we require
Q= g/ olsin|df = 2me— (10) o
0 Po “L—-9, for¢=-—m,m,0. (17b)

b

Hence, the wave functio¥ = H. will assume the form:

hence, the capacitance-per-unit length:

Q _ 27e (11)
Vi po Hz=S. (h,¢)-J. (h,p), n=0,1,2  (18)
is plotted in Fig. 4 versus the eccentricity

These types of modes are characterized by the absence of the
electric field component along the-axis; as a consequence,
they may also exist in elliptical hollow guides without the
Ampere’s law gives the current on the strip as loading strip and they are well known in the literature [9]. We

Voot W denote these modes by the symtE? .
I= ng dl = 2 / = gdp = 2. (12) The eigenvalues are computed by imposing the boundary

B. Inductance-per-unit Length

NPo J—x 9 Po condition on the guide walls, yielding the dispersion equation:
Although the integration path is arbitrary, choosing an 9 _ h.
ellipse that is confocal with the outer conductor simplifies the a—pJen(hc, po) =0 with k. = (19)

evaluation. Furthermore, we have
2) TE Odd Modes:For these modes (17a) still holds, but

L-I= / B-ds. (13) we requireH. to be odd aty = 0 outside the strip, that is
5
The result of combining (12) and (13) is Hz=0, for¢=-—m, m0. (20)
L= &po- (14) A wave function¥ = H, satisfying (17a) and (20) can be
2 selected as follows:
C. Characteristic Impedance Hz=S, (h, ¢)- R, (h, p) n=1,2,3-.- (2la)
The characteristic TEM impedance is defined as follows:
with
L Po
Zo = e (15) J! h, 0
¢~ o, (0 0) = Ja, (b ) = 300 N (). (210)
and is plotted in Fig. 4 versus the eccentricity o
By inspection we can see that Equation (21b) is chosen with a view to satisfying the
e 1 boundary conditions on the strip (i.€2;, (h, 0) = 0). These
VLC = g—"po =o€ = —. (16) modes are denoted BYE? . .
s Po c

By enforcing the boundary condition on the guide walls, we

Looking at the plot of the characteristic impedange derive the corresponding dispersion equation:
versus the eccentricity, we note that as ~ 0.8, 7y ~ 50 €,

as suitable for applications. agRon(hc, po) = 0. (22)
0
V. HIGHER ORDER MODES ANALYSIS It is noted that the fields are now singular at the strip edges,

The solutions of the Helmholtz's equation can be separat%ﬂd these modes can only exist in the strip-loaded guide.

in the following two sets of modes, each having even/odd
symmetry with respect to thg = 0 axis: 1) TE modes, for B- TM Modes
which it is ¥ = H_, and 2) TM modes, for which we have Vanishing of & = E. on the conductors implies:
U = FE..
We now consider their propagation behavior in detail. U(p, $) =0, for p = p,, 0. (23)
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1) TM Even Modes:In this case we se¥ equal toE., so
that & must vanish on the strip while at its sides we have

ov — 0. (24)
ad) ¢==x7,0

Hence, we have to seledt = F, as
Ez=5,. (h, ¢)- R (h, p), n=20,1,2 3,--- (25a)

where

e, (h, 0)

e 3 = Je 5 - Ne 5 . 25b
R'n(h p) Jn(h’ p) Ne,n(h7 0) n(h’ p) ( )
Equation (25b) is chosen so as to satisfy the boundagy 3. The grid used for the computation with the FEM method.

condition on the strip (i.e.R.,(h, 0) = 0). From (24) and
(25), it follows that such modes may only exist in the presence ) ) i )
of the strip. They are denoted B¥M:.. and their cutoff Thus, using triangular elements, their number is

wavenumbers are obtained from N=2"(np+1)"(ng +1).

R, (he, po) = 0. (26) 1) TEM Characteristic Impedancein order to find the

2) TM Odd Modes:They may exist even in the absencér.EM ch_aractenstlc |mpe_dance we must f|r§t determine _the
: - : . : distribution of the potential on the cross section (the solution
of the strip (elliptical waveguide) [9]; in this case, the wavée

function ¥ = E. becomes odd with respect to theaxis, due of Laplace’s equation). By imposing the boundary conditions

. . on the inner strip and on the outer conducttr £ 1 on the
to symmetry. Moreover, the-component of the electric field e
; . ) ) .. . former andV = 0 on the latter). Once the potential is known
vanish on the strip as given in (23), as well as at its side . . .
at all grid points, we compute the total charge on the strip

that is, using Gauss’ law:
\Ij(pv d)) = 07 for d) = -7, T, 0. (27) av
Q:j[D-dz:ej[—dz.
Hence, on
_ _ If we number the nodes (i.e., the grid points) in the
E. =80, (h, ¢) - Jo, (, p), n=012--. (28 clockwise direction, starting from the lower left corner of
These modes are denoted withM¢,,, and their cutoff Fig. 3, the nodes on thith ellipse will be numbered as
wavenumbers are obtained from (i— 1) (ng+1)+j+1
Jon (hc7 po) =0. (29) where

In the Appendix we report the expressions of the TE/TM ;=1 2 ..., (n,+1)andj =1,2,---, (ng + 1).

fields.
By choosing one of these ellipses, for example #fth, as

VI. METHOD an integration path, Gauss' law becomes

ng
In comparison with the analytical solution, we also have 0= 42[‘/‘ . it = Vi il - Ag
computed TEM characteristic impedance and cutoff wave- (fo=D)-(nat )i+l = Vio-(nyt i+l A,

lengths of the TE/TM higher order modes, utilizing the finite- =

element method (FEM) method. Since this method is welith

known [8], we only report an important particular involved Ap = il andAp = Po
in its implementation—the choice of the discretizing grid. 2:mg Tp

Referring to Fig. 3, we note that the grid topology is chosen in The factor 4 is due to the fact that we are considering only
order to fit the coordinate system. Taking into account that th@e-quarter of the cross section. We note that jiiedex of
cross section is symmetric along theand y axes, we only the summation must be stoppednat in order to not compute

consider one quadrant. the nodes on the-axis twice.
We divide the geometrical area i, ellipses, each corre- The capacitance-per-unit length is now found as:
sponding to a particular valye of the radial coordinates: O
. pPo : C= Vo= Q
p=1-—, 1=0,1,2,---,n, o
p where we sefV, = 1.
and inn, hyperbolas, each corresponding to a vajuef the Finally, the TEM characteristic impedance is computed as
angular coordinate: 1
d):I_J 7r 3 j:071727"'7n¢' ’ ¢ C
2 2:ng wherec is the phase velocity of light in the free space.
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Fig. 4. Comparison between analytical and numeri#ddE M) data of the
characteristic TEM impedance and of the normalized capacitance (f#tio)
per-unit length, plotted versus the eccentricity of the cross section.

TABLE |

COMPARISON BETWEEN ANALYTICAL AND CORRESPONDINGFEM VALUES OF THE
NORMALIZED CAPACITANCE-PER-UNIT LENGTH AND OF THE CHARACTERISTIC
IMPEDANCE FORDIFFERENTV ALUES OF THEECCENTRICITY OF THECROSSSECTION

0.1

0.2

0.3

0.4 0.5 0.6 0.7

0.8 0.9

[

Cleg
FEM.
analytical
error{(%
-
F.EM.
analytical

error(%)

2.1092
2.0991
0.48

178.49
179.59
0.61

2.7574
2.7408
0.60

136.53
137.55
0.73

33777
3.3531
0.73

111.46
112.43
0.86

4.0444 4.8189 5.7825 7.1011
4.0102 4.7710 5.7192 17.0157
0.85 1.00 1.10 1.21

93.09
94.01
0.98

78.13
79.02
112

65.11
65.92
1.23

53.02
53.74
1.33

9.1900 13.607
9.0647 13.450
1.38 1.17

40.97
41.59
1.49

27.67
28.03
1.29

the procedure is well known and only a brief mention is giverfﬁ
Considering for TE modes thé&l z-component and for TM
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Fig. 5 Comparison between analytical and numeridak (M) data of the
2) TE/TM Higher Order Modes:As can be found in [8], normalized cutoff wavelengths versus the eccentricity of the cross section,

ode comparison.

modes the Ez-component, we computed the stationary points
of the following functional:

I(®) = %//Hv?cm — k0] dS

where ® can be eithetdz or Ez.

the kind of mode (i.e., the indem, n in the form TE.,
and TM,, ) corresponding to each eigenvalue.

VILI.

N UMERICAL RESULTS

r the first higher order TE modes. (a) First mode comparison. (b) Second

In Fig. 5(a) and (b) we report the cutoff frequencies for
the first two modes of each of the four types of Section
V, evaluated both analytically and by means of the FEM

program. The normalized

wavelengths are plotted versus the

eccentricity of the cross section; the normalization constant
is the major axis of the ellipse. In Table II, (a) and (b) are
This, in turn, leads to the problem of finding eigenvaluegported the numerical values of these quantities; as can be
and eigenvectors of a sparse matrix, where the eigenvalgeen, the agreement between analytical and FEM data seems
represent the squares of the transverse constant of propagatobe very good over a wide range of eccentricities. The less
and the eigenvectors the values Hfz/E> at all the grid accurate results are obtained in correspondence of the values
points. By inspection of these latter quantities we recognizg the edges of the range; in fact, for eccentricity too near to
zero or to unity, the FEM method suffers from the divergence
of the fields, while the analytical model gives exact results.
The Mathieu radial functions involved in the above calcu-
lations were computed by utilizing their Bessel expansions

[4]-{6].

In Fig. 4 we compare the analytical results with the nu- We may note, as in [7], that for values of eccentricity less
merical ones obtained by the FEM method. We report TEMan 0.3 the ratio
characteristic impedance and normalized capacitance versus
eccentricity; the two sets of data are in excellent agreement as

can be verified from the relative percentages of errors reported

in Table

| b

= tanh p,

(30)
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TABLE 1
COMPARISON BETWEEN ANALYTICAL AND FEM DATA OF THE NORMALIZED
CuTOFF WAVELENGTHS WITH THE RELATIVE PERCENTAGE OFERROR (@) FOR THE
FIRsTHIGHER-ORDER TE MoDES. (b) FOR THEFIRST HIGHER-ORDERTM M ODES

[ 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9
TE®y4
FEM 1.690 1.694 1.695 1.695 [.693 1.690 1.686 1.681 1.674

analytical { 1.706 1.705 1.702 1.699 1.693 1.692 1.684 1.680 1.66%

error(% 0.92 0.63 0.43 0.23 0.01 0.08 0.15 0.05 0.31
TES11 ’

FEM. 1.699 1.735 1.801 1.885 1.997  2.127  2.268 2.416  2.564
analytical | 1.715 1.749 1.809 1.896 2.007 2135 2273 2.418 2.565
error{% 0.98 0.83 0.44 0.61 0.49 0.36 0.22 0.09 0.02

TES24

FEM. 1.011 1.007 0.99% 0.992 0989 0.997 1.020 1.056 1.099
analytical | 1.025 1.019 1.009 1.001 0.998 1.009 1.037 1.077 1.124
error{%) 1 1 1 1 1 1 2 2 2

@
€ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

TM®p1

FEM. 1.042  0.952 0.877 0812 0.753 0.695 0.628 0.539  0.404
analytical 1.02 0.94 0.87 0.81 0.75 0.70 0.63 0.54 0.40
error(% 2.16 1.29 0.86 0.23 0.37 0.77 0.35 0.17 1.00

TM®y1

FEM. 0.829 0.815 0.797 0.771 0.736 0.689  0.627 0.539 0.404

analytical 0.82 0.81 0.79 0.77 0.74 0.69 0.63 0.54 0.41 / Q% j ; “‘ 3 X /
error(% 1.06 0.65 0.84 0.09 0.55 0.09 0.52 0.19 1.46 TIENI O WA y.)\\_\,//‘//
T N
FEM. 0.823 0.784 0.733  0.675 0.615 0.560 0.509 0.449 0.353 = \\-\t\ T Sy Y
7,

analytical | 0.81 0.78 0.74 .68 0.62 0.56 .51 0.45 0.35
error(%) 1.65 0.54 0.92 0.74 0.76 0.00 0.22 0.24 0.74

Azimuta] component Azimutal component ‘
Efps) Elos).
_ _ o @ (b)
IS. very close to unity, hence’ when the cross section is ”eaﬂb’. 6. Comparison of the electric field component for the first higher order
circular, the hollow-guide modesIES,,, and TMS, ) tend TE mode. (a) Analytical results and (b) corresponding results obtained by the
to the correspondent ones of the circular waveguide. FEM method.

In Fig. 6(a) and (b), we compare the radial and the angular
component of the electric field for the first TE higher mode, ot¢lliptical guide; and 2) those solely due to the presence of the
tained by the present analytical method, with the correspondiigip conductor featuring singular behavior at the strip edges.
ones evaluated by means of the FEM method. We observe &utoff frequencies and mode patterns of the lowest eight
generally good agreement, apart from the field near the stmpdes_ are in excellent agreement with the results of the FEM
edges, where the FEM results are less accurate because of{kdysis.
inevitable discretizing error involved in the numerical method
itself.

In the computation with the FEM method we note that
a 450-element grid gives an error which is less than 2/3‘1/&. TE Modes
The grid topology (see Fig. 3) is the same as the coordinaté
system with 15 divisions for both the radial coordinate and
the azimutal coordinate (using triangular elements this gives:yy _ _Jp Y, Hz— P <3H7 At 9y, ¢>
2*(15*15) = 450 elements). The computation time in this k2 k2 \9p o
case was about 15 min for each value of eccentrity, against (31a)
5 min needed for the analytical computation (not optimized). EVen Modes:
The PC used for this computation is equipped with an 486- _ﬁ (Se, (he, §)J. (hey p) - p
100 MHz processor and 12-Mb RAM:; all the programs were 2 e e

implemented in MATLAB. + 8% (hey @) e, (hey p) - ¢)  (31a-i)

(b)

APPENDIX
FIELD EXPRESSIONS

VIIl. CONCLUSION Odd Modes:

The suspended strip in elliptical cross section is solved _‘@ (8o, (hey PYR. (he, p) - p
analytically in elliptical coordinates, obtaining field patterns ke : .
and characteristic impedance versus eccentricity of the funda- + 8, (he, )R, (he, p) - @) (31a-ii)
mental TEM mode in closed form.
Higher order TE and TM modes of two kinds are also
found analytically: 1) those that would also exist in an empty E,=—Zrg- (2 x Hy) (31b)
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Even Modes:
P 3 ~
g 1 (e ey )L, (s )
— 8L, (he; ) e, (he, p) - p)  (31b-i)
Odd Modes:
B ;
:ZTE'k_g'( So, (he, )R, (he, p) - ¢
— 8, (hey §)Ro, (he, p) - p)  (31b-ii)
f 97 —1/2
Zrp=mn-|1- <—c> (31c)
/
B. TM Modes
__Jp _ B (9
E=- 52 ViEz = 52 <apEz 8¢E7 d)) (32a)
Even Modes:

" 3 , .
- —% (8o (hes )R, (hes p) -
+ 8. (hes §)Re,, (he, p) - §)  (32a-i)
Odd Modes:
= 30 (S, (hes $), (e p) -
- k_g N On c O s P) P
+ S, (hes $) o, (he, p)- @) (32avil)
Zrm
Even Modes:
1 i3 N
g (e e DR (e )6

=S¢, (hey @) Re, (he, p) - p) (320 — 1)

Odd Modes:
1 1B N
T g3 Sonlhe: )0, (hes p) -
=5, (he, §)Jo, (he, p) - ) (32b-ii)
f o71/2
ZTJW =n- 1- <?c> . (32C)
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