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Analysis of the Suspended Strip in Elliptical
Cross Section by Separation of Variables

Tullio Rozzi, Fellow, IEEE,Luca Pierantoni,Member IEEE,and Marco Ronzitti

Abstract—The coaxial suspended strip configuration in ellip-
tical cross section is often found in transitions from ordinary
coax to planar circuits and other geometries. Using elliptical
coordinates makes the problem separable, leading to closed-form
solutions for the fundamental TEM mode and the TE/TM higher
modes. It is emphasized that the presence of the thin strip is
dealt with analytically by this approach. Mode patterns and TEM
characteristic impedance are reported. The cutoff frequencies
versus eccentricity are computed for the first eight modes.

Index Terms—Elliptical coordinates, strips.

I. INTRODUCTION

A THIN metallic strip centrally suspended in a hollow
conductor of elliptical cross section, as shown in Fig. 1,

constitutes a coaxial-like TEM transmission line, where TEM
characteristic impedance and mode pattern can be controlled
by varying the strip width and eccentricity.

Apart from its own merit, it can be found in transitions from
ordinary coax to coplanar waveguide (CPW) and other planar
guides or from coax to TEM cells [1].

Although the fundamental TEM mode of the cross section
of Fig. 1 can be analyzed by conformal mapping [2], [3],
its higher order TE/TM modes involve solution of the wave
equation with boundary conditions on the elliptic conduc-
tor and in presence of sharp-edge conditions at the strip
extremities. The latter problem can also be solved by a
variety of methods, such as variational techniques, transverse
resonance, or numerical methods such as finite elements of
finite-difference time domain (FDTD). This configuration,
however, also provides an instructive test-bed for a direct
solution of the wave equation by the method of separation
of coordinates, once the appropriate system of coordinates is
selected. The latter is seen to be the elliptic cylinder system,
where the inner strip conductor is the limiting case of an ellipse
of unit eccentricity.

Separation of “radial” and “angular” dependencies leads to
the well-known Mathieu’s equation, the solutions of which
are fairly well documented [4], [5] and currently available in
standard mathematical codes [6].

The closed-form analysis very simply produces the funda-
mental TEM mode (see Fig. 2) while also highlighting the
existence of two types of higher modes, first reported in [7]
in connection with ridged waveguides. The first kind is found
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Fig. 1. Cross-section geometry and coordinate system.

Fig. 2. Equipotential curves on the cross section. (These curves were plotted
for a value of eccentricity equal to 0.7).

in closed elliptical waveguides and is perfectly “regular,” that
is, it neither feels the presence of the strip nor presents edge
singularities. The latter kind, however, being closely linked to
the presence of the strip, displays the typical singular square
root behavior.

Characteristic impedance and mode pattern of the funda-
mental mode are reported versus the eccentricity, whereas
cutoff frequencies and mode patterns are computed for the
first eight TE and TM modes of both kinds above.

II. THEORY

A. Cross-Section Geometry

Let us consider the structure shown in Fig. 1 which is
cylindrical and uniform along the-direction of propagation. It
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consists of an outer conductor of elliptical form, and an inner
strip conductor extending between the two focal points of the
ellipse; both conductors are ideal. This cross section can be
described in terms of an elliptical cylindrical coordinate system

, , that is connected to the Cartesian one, , by
means of the following relationships [4], [7]:

(1a)

The elliptical outer boundary of the guide is described by
the locus:

(1b)

whereas the inner strip of width, can be seen as a degenerate
ellipse given by

(1c)

The geometrical characteristics of the section can be use-
fully summarized by a single parameter, its eccentricity,
defined as follows:

(1d)

where is the major axis of the elliptical outer conductor that
is expressible in terms of, as

(1e)

B. Solution of the Wave Equation

The electromagnetic wave propagation in the above cylin-
drical guide can be described in terms of a scalar-wave
function satisfying the Helmholtz equation:

(2)

with

(2a)

being the transverse component of the wavenumber
.

In terms of elliptical coordinates, the Helmholtz equation
can be rewritten as follows:

(3)

Equation (3) separates in elliptic cylinder coordinates. As a
consequence, the scalar-wave functioncan be represented
as the product:

(4)

The wave function must also be continuous with con-
tinuous first derivatives at all points of the region except,
at most, isolated points on the boundary where it may have
quadratically integrable singularities.

The azimuthal function and the radial function may be
determined from the two differential equations:

(5a)

(5b)

where is the separation constant andis defined as

(5c)

Equation (5a) is the Mathieu’s equation, while (5b) is the
modified Mathieu’s equation. The proper azimuthal solutions
are those having periods of and 2 , and, therefore, is
the Mathieu function of either odd or even types denoted
by and , respectively. The value of the
separation constant is completely defined by this choice and

takes the values and , where these quantities are the
eigenvalues corresponding to odd or even periodic Mathieu
functions. Two types of radial functions correspond to each
value of and . They may be denoted by and

, or and , and they correspond
to Bessel and Neumann functions in circular cylindrical co-
ordinates. For details and properties of these functions, the
reader is referred to [4] and [5].

III. FUNDAMENTAL TEM-MODE ANALYSIS

In order to obtain the TEM mode we set ; then
and the wave equation (2) reduces to the Laplace’s equation
for the quasistatic potential:

(6)

If the inner-strip potential is set equal to , the solution
of (6) is simply given by

(7)

The electric and magnetic fields are derived by means of
the following relationships:

(8)

hence,

(8a)

(8b)

being

(8c)

a “metric” scale factor, and

(8d)

the free-space wave impedance.

IV. CHARACTERISTIC TEM IMPEDANCE

The characteristic TEM impedance is obtained from the
computation of the distributed capacitance and inductance of
the line-per-unit length.
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A. Capacitance-per-unit Length

Referring to Fig. 1, after setting , where
is the abscissa on the strip (i.e., for ), the charge density

is given by

(9)

and the total charge per unit length on the strip is

(10)

hence, the capacitance-per-unit length:

(11)

is plotted in Fig. 4 versus the eccentricity.

B. Inductance-per-unit Length

Ampere’s law gives the current on the strip as

(12)

Although the integration path is arbitrary, choosing an
ellipse that is confocal with the outer conductor simplifies the
evaluation. Furthermore, we have

(13)

The result of combining (12) and (13) is

(14)

C. Characteristic Impedance

The characteristic TEM impedance is defined as follows:

(15)

and is plotted in Fig. 4 versus the eccentricity.
By inspection we can see that

(16)

Looking at the plot of the characteristic impedance
versus the eccentricity, we note that as , ,
as suitable for applications.

V. HIGHER ORDER MODES ANALYSIS

The solutions of the Helmholtz’s equation can be separated
in the following two sets of modes, each having even/odd
symmetry with respect to the axis: 1) TE modes, for
which it is , and 2) TM modes, for which we have

.
We now consider their propagation behavior in detail.

A. TE Modes

Apart from the particular type of symmetry considered,
these types of modes must satisfy the boundary condition of
the maximum tangential magnetic field on the conductor:

and for

(17a)
1) TE Even Modes:In order for to be even with respect

to the axis, we require

for (17b)

Hence, the wave function will assume the form:

(18)

These types of modes are characterized by the absence of the
electric field component along the-axis; as a consequence,
they may also exist in elliptical hollow guides without the
loading strip and they are well known in the literature [9]. We
denote these modes by the symbol .

The eigenvalues are computed by imposing the boundary
condition on the guide walls, yielding the dispersion equation:

with (19)

2) TE Odd Modes:For these modes (17a) still holds, but
we require to be odd at outside the strip, that is

for (20)

A wave function satisfying (17a) and (20) can be
selected as follows:

(21a)

with

(21b)

Equation (21b) is chosen with a view to satisfying the
boundary conditions on the strip (i.e., ). These
modes are denoted by .

By enforcing the boundary condition on the guide walls, we
derive the corresponding dispersion equation:

(22)

It is noted that the fields are now singular at the strip edges,
and these modes can only exist in the strip-loaded guide.

B. TM Modes

Vanishing of on the conductors implies:

for (23)
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1) TM Even Modes:In this case we set equal to , so
that must vanish on the strip while at its sides we have

(24)

Hence, we have to select as

(25a)

where

(25b)

Equation (25b) is chosen so as to satisfy the boundary
condition on the strip (i.e., ). From (24) and
(25), it follows that such modes may only exist in the presence
of the strip. They are denoted by and their cutoff
wavenumbers are obtained from

(26)

2) TM Odd Modes:They may exist even in the absence
of the strip (elliptical waveguide) [9]; in this case, the wave
function becomes odd with respect to the-axis, due
to symmetry. Moreover, the-component of the electric field
vanish on the strip as given in (23), as well as at its sides,
that is,

for (27)

Hence,

(28)

These modes are denoted with and their cutoff
wavenumbers are obtained from

(29)

In the Appendix we report the expressions of the TE/TM
fields.

VI. M ETHOD

In comparison with the analytical solution, we also have
computed TEM characteristic impedance and cutoff wave-
lengths of the TE/TM higher order modes, utilizing the finite-
element method (FEM) method. Since this method is well
known [8], we only report an important particular involved
in its implementation—the choice of the discretizing grid.
Referring to Fig. 3, we note that the grid topology is chosen in
order to fit the coordinate system. Taking into account that the
cross section is symmetric along theand axes, we only
consider one quadrant.

We divide the geometrical area in ellipses, each corre-
sponding to a particular value of the radial coordinates:

and in hyperbolas, each corresponding to a valueof the
angular coordinate:

Fig. 3. The grid used for the computation with the FEM method.

Thus, using triangular elements, their number is

1) TEM Characteristic Impedance:In order to find the
TEM characteristic impedance we must first determine the
distribution of the potential on the cross section (the solution
of Laplace’s equation). By imposing the boundary conditions
on the inner strip and on the outer conductor ( on the
former and on the latter). Once the potential is known
at all grid points, we compute the total charge on the strip
using Gauss’ law:

If we number the nodes (i.e., the grid points) in the
clockwise direction, starting from the lower left corner of
Fig. 3, the nodes on theth ellipse will be numbered as

where

and

By choosing one of these ellipses, for example theth, as
an integration path, Gauss’ law becomes

with

and

The factor 4 is due to the fact that we are considering only
one-quarter of the cross section. We note that the-index of
the summation must be stopped at, in order to not compute
the nodes on the -axis twice.

The capacitance-per-unit length is now found as:

where we set .
Finally, the TEM characteristic impedance is computed as

where is the phase velocity of light in the free space.
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Fig. 4. Comparison between analytical and numerical (FEM) data of the
characteristic TEM impedance and of the normalized capacitance (ratioC=�o)
per-unit length, plotted versus the eccentricity of the cross section.

TABLE I
COMPARISONBETWEEN ANALYTICAL AND CORRESPONDINGFEM VALUES OF THE

NORMALIZED CAPACITANCE-PER-UNIT LENGTH AND OF THECHARACTERISTIC

IMPEDANCE FORDIFFERENTVALUES OF THEECCENTRICITY OF THECROSSSECTION

2) TE/TM Higher Order Modes:As can be found in [8],
the procedure is well known and only a brief mention is given.
Considering for TE modes the -component and for TM
modes the Ez-component, we computed the stationary points
of the following functional:

where can be either or .
This, in turn, leads to the problem of finding eigenvalues

and eigenvectors of a sparse matrix, where the eigenvalues
represent the squares of the transverse constant of propagation
and the eigenvectors the values of at all the grid
points. By inspection of these latter quantities we recognize
the kind of mode (i.e., the index , in the form
and ) corresponding to each eigenvalue.

VII. N UMERICAL RESULTS

In Fig. 4 we compare the analytical results with the nu-
merical ones obtained by the FEM method. We report TEM
characteristic impedance and normalized capacitance versus
eccentricity; the two sets of data are in excellent agreement as
can be verified from the relative percentages of errors reported
in Table I.

(a)

(b)

Fig. 5 Comparison between analytical and numerical (FEM) data of the
normalized cutoff wavelengths versus the eccentricity of the cross section,
for the first higher order TE modes. (a) First mode comparison. (b) Second
mode comparison.

In Fig. 5(a) and (b) we report the cutoff frequencies for
the first two modes of each of the four types of Section
V, evaluated both analytically and by means of the FEM
program. The normalized wavelengths are plotted versus the
eccentricity of the cross section; the normalization constant
is the major axis of the ellipse. In Table II, (a) and (b) are
reported the numerical values of these quantities; as can be
seen, the agreement between analytical and FEM data seems
to be very good over a wide range of eccentricities. The less
accurate results are obtained in correspondence of the values
at the edges of the range; in fact, for eccentricity too near to
zero or to unity, the FEM method suffers from the divergence
of the fields, while the analytical model gives exact results.

The Mathieu radial functions involved in the above calcu-
lations were computed by utilizing their Bessel expansions
[4]–[6].

We may note, as in [7], that for values of eccentricity less
than 0.3 the ratio

(30)
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TABLE II
COMPARISONBETWEEN ANALYTICAL AND FEM DATA OF THE NORMALIZED

CUTOFFWAVELENGTHS WITH THE RELATIVE PERCENTAGE OFERROR. (a) FOR THE

FIRST HIGHER-ORDERTE MODES. (b) FOR THEFIRST HIGHER-ORDERTM MODES

(a)

(b)

is very close to unity, hence, when the cross section is nearly
circular, the hollow-guide modes ( and ) tend
to the correspondent ones of the circular waveguide.

In Fig. 6(a) and (b), we compare the radial and the angular
component of the electric field for the first TE higher mode, ob-
tained by the present analytical method, with the corresponding
ones evaluated by means of the FEM method. We observe a
generally good agreement, apart from the field near the strip
edges, where the FEM results are less accurate because of the
inevitable discretizing error involved in the numerical method
itself.

In the computation with the FEM method we note that
a 450-element grid gives an error which is less than 2/3%.
The grid topology (see Fig. 3) is the same as the coordinate
system with 15 divisions for both the radial coordinate and
the azimutal coordinate (using triangular elements this gives:

elements). The computation time in this
case was about 15 min for each value of eccentrity, against
5 min needed for the analytical computation (not optimized).
The PC used for this computation is equipped with an 486-
100 MHz processor and 12-Mb RAM; all the programs were
implemented in MATLAB.

VIII. C ONCLUSION

The suspended strip in elliptical cross section is solved
analytically in elliptical coordinates, obtaining field patterns
and characteristic impedance versus eccentricity of the funda-
mental TEM mode in closed form.

Higher order TE and TM modes of two kinds are also
found analytically: 1) those that would also exist in an empty

(a) (b)

Fig. 6. Comparison of the electric field component for the first higher order
TE mode. (a) Analytical results and (b) corresponding results obtained by the
FEM method.

elliptical guide; and 2) those solely due to the presence of the
strip conductor featuring singular behavior at the strip edges.

Cutoff frequencies and mode patterns of the lowest eight
modes are in excellent agreement with the results of the FEM
analysis.

APPENDIX

FIELD EXPRESSIONS

A. TE Modes

(31a)
Even Modes:

(31a-i)

Odd Modes:

(31a-ii)

(31b)
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Even Modes:

(31b-i)

Odd Modes:

(31b-ii)

(31c)

B. TM Modes

(32a)

Even Modes:

(32a-i)

Odd Modes:

(32a-ii)

(32b)

Even Modes:

Odd Modes:

(32b-ii)

(32c)
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